The use of pesticides is often regarded as a fundamental aspect of conventional agriculture. However, these compounds have gained recognition as some of the oldest and most widely employed xenobiotic contaminants, necessitating effective strategies for human biomonitoring. In this context, a method was developed for the determination of 16 legacy organochlorine pesticides, 6 metabolites of current pesticides (2,4-D, malathion, parathion, fipronil, pyraclostrobin, cypermethrin, permethrin, cyfluthrin), and 1 triazine herbicide (atrazine) in serum. Samples were prepared with water, formic acid, acetonitrile, and ultrasound irradiation, followed by solid-phase extraction with Oasis Prime HLB. Subsequently, metabolites from current pesticides underwent derivatization using MTBSTFA with 1% TBDMSCl for analysis via gas chromatography-tandem mass spectrometry (GC-MS/MS), employing an SLB-5MS fused silica capillary column. Analytical curves were generated with limits of quantification from 0.3 to 4.0ng.mL-1. Accuracy ranged from 69 to 124%, and the coefficient of variation from 2 to 28%. Moreover, determining 1-(4-chlorophenyl)-1H-pyrazol-3-ol was suggested as a biomarker for pyraclostrobin biomonitoring. This analytical approach facilitated the determination of both legacy and metabolites of current pesticides in the same serum sample, presenting an interesting and cost-effective option for large cohorts, and multi-omics studies that evaluate time-dependent biomarkers in blood samples, thereby enabling biomonitoring within the same matrix. Furthermore, a proof-of-concept involving 10 volunteers demonstrated exposure to 9 pesticides at mean concentrations measured in ngmL-1, consistent with findings from various biomonitoring initiatives.