Abstract
Static headspace capillary gas chromatography (HSGC) has been employed to monitor the level of residual solvents in the pharmaceutical materials. Most of the HSGC methods, however, consume significant amounts of diluents and require considerable amount of sample preparation time. Accordingly, a HSGC method featured with fast turnaround time, and minimal amount of solvent use has been developed for the quantitative analysis of 27 residual solvents frequently used in the development and manufacturing processes of pharmaceutical industry. This HSGC-FID method employs a commercially available fused silica capillary column, a split injection (40:1), and a programmed temperature ramp. It was qualified for specificity, accuracy, repeatability/precision, linearity, LOQ, solution stability, and robustness using two representative sample matrices. The standards, samples and spiked samples were demonstrated to be stable for at least 10 days at room temperature in sealed headspace vials with a recovery of ≥ 93%. The method was also shown to be robust, and its performance was not affected by small changes of carrier gas flow rate, initial oven temperature or the headspace oven temperature. In this new approach, the analytical sample was prepared by dissolving the sample into 1 mL of the diluent and the standard solution was prepared by diluting 1 mL of the custom-made stock into 9 mL of the diluent whereas the traditional approach requires liters of the diluent, making the new approach environmentally friendly, sustainable, economical, agile, error-proofing and thus appropriate for a variety of pharmaceutical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.