Genetic mutations of fused in sarcoma (FUS) causing amyotrophic lateral sclerosis (ALS) may disrupt mRNA splicing events. For example, the FUS c.1394-2delA variant was reported in two western ALS patients, but its molecular mechanism is unclear. In this study, we aim to investigate FUS splice site mutations in Chinese ALS patients. Sanger sequencing was used to identify FUS splicing mutations in Chinese ALS patients. We combined a deep learning tool (SpliceAI), RNA sequencing, and RT-PCR/RT-qPCR to analyze the effect of FUS c.1394-2delA mutation on RNA splicing and expression. AlphaFold was used to predict the protein structure of mutant FUS. In transfected cell lines, we used immunofluorescence to assess cytoplasmic mislocalization of mutant FUS protein. We identified a de novo FUS splice acceptor site mutation (c.1394-2delA, p. Gly466Valfs*14) in one Chinese sporadic ALS patient, which is linked to exon 14 skipping, and upregulated total FUS mRNA expression. The FUS splice site mutation was predicted to be translated into a truncated protein product at C-terminal. In vitro studies revealed that the FUS mutation increased cytoplasmic mislocalization in both HEK293T and SH-SY5Y cells. We identified a de novo FUS splicing mutation (c.1394-2delA, p. Gly466Valfs*14) in 1 out of 233 Chinese ALS patients. It caused abnormal RNA splicing, upregulated gene expression, truncated FUS translation, and cytosolic mislocalization. Our findings suggested that FUS splice site mutation is rare in Chinese ALS patients and extended our knowledge of molecular mechanisms of the FUS c.1394-2delA mutation.