Fused Deposition Modeling (FDM) is an additive manufacturing technique that uses a 3D printer to extrude molten filament through a nozzle, which moves along the X, Y, and Z axes to create parts with the desired geometry. FDM offers numerous advantages, especially for producing parts with complex shapes, due to its ability to enable rapid and cost-effective manufacturing compared to traditional methods. This study implemented an Artificial Neural Network (ANN) to optimize process parameters aimed at minimizing dimensional inaccuracies in the FDM process. Key parameters considered for optimization included the number of shells, infill percentage, and nozzle temperature. The ANN utilized three algorithms: Scaled Conjugate Gradient, Bayesian Regularization, and Levenberg-Marquardt. Model performance was evaluated based on dimensional deviations along the X and Y axes, with a hidden layer of 25 neurons. Among the algorithms, Scaled Conjugate Gradient provided the most accurate results in minimizing dimensional errors.
Read full abstract