Gray mold caused by Botrytis cinerea is an emerging postharvest disease of mandarin fruit in California. Management of postharvest diseases of mandarins relies on postharvest fungicides; however, multiple resistance to fungicides of different modes of action is common in B. cinerea populations from mandarin, leading to their failure to control decay. Natamycin is commonly used in the food industry as an additive, and it has been registered as a biofungicide for postharvest use on citrus and some other fruits. Sensitivity to natamycin of 64 isolates of B. cinerea from decayed mandarin fruit with known resistance phenotypes to other citrus postharvest fungicides (azoxystrobin, fludioxonil, pyrimethanil, and thiabendazole) was tested. Effective concentrations of natamycin to cause a 50% reduction relative to the control for conidial germination were from 0.324 to 0.567 µg/ml (mean of 0.444 µg/ml), and those for mycelial growth were 1.021 to 2.007 µg/ml (mean of 1.578 µg/ml). Minimum inhibitory concentrations where no fungal growth was present were 0.7 to 1.0 µg/ml for conidial germination and 5.0 to 10.0 µg/ml for mycelial growth. No cross-resistance between natamycin and other citrus postharvest fungicides was detected. Decay control efficacy tests with natamycin were conducted on mandarin fruit inoculated with B. cinerea isolates exhibiting five different fungicide resistance phenotypes, and natamycin significantly reduced incidence and lesion size of gray mold on fruit, regardless of fungicide resistance phenotypes. Natamycin has the potential to be an effective tool for integration into postharvest fungicide programs to control gray mold and manage B. cinerea isolates resistant to fungicides with other modes of action.