In response to carbon neutrality, photocatalytic reduction of CO2 has been the subject of growing interest for researchers over the past few years. Multi-carbon products (C2+) with higher energy density and larger market value produced from photocatalytic reduction of CO2 are still very limited owing to the low photocatalytic productivity and poor selectivity of products. This review focuses on the recent progress on photocatalytic reduction of CO2 towards C2+ products from the perspective of performance evaluation and mechanistic understanding. We first provide a systematic description of the entire fundamental procedures of photocatalytic reduction of CO2. An in-depth strategy analysis for improving the selectivity of photocatalytic reduction of CO2 to C2+ products is then addressed. Then the focus was on summarizing the ways to improve C2+ selectivity. The intrinsic mechanisms of photocatalytic reduction of CO2 to C2+ products are summarized in the final. Combining the foundation of photocatalysis with promising catalyst strategies, this review will offer valuable guidance for the development of efficient photocatalytic systems for the synthesis of C2+ products.