A time-dependent approach to study phase control over molecular photoabsorption, provided by intense laser pulses, is elaborate. The method allows for the decay linewidth of molecular states and frequency bandwidth of the controlling laser field, and can be applied in weak and strong laser fields where the perturbation theory is invalid. It is shown that a frequency mismatch between the fundamental laser wave and its third harmonic can destroy control. For the example of the one-photon versus three-photon control a simple picture of interference from two monochromatic absorption pathways is not enough to explain phase control and one needs to consider a nonlinear temporal interference of multiquantum transitions. In the perturbation-theory limit an elegant generalization of the famous Shapiro-Hepburn-Brumer equation for the one-photon versus three-photon control is derived. Various numerical calculations illustrate the dependence of phase control on molecular linewidth, fundamental laser wavelength, pulse duration, and peak intensity. It is obtained, that the one-photon versus three-photon control is productive if the molecular state populations, individually produced by each laser wave, have beats of approximately the same frequency. The calculations demonstrate that an enough intense optical pulse can suppress molecular decay and may be used in order to keep stable the state population of a decaying molecule for a long time. The available experimental results for the one-photon versus three-photon control over simple and large polyatomic molecules are analyzed and recommendations for the experimental improvement of control are formulated.