This paper presents a novel time- and frequency-domain concept of modeling with the partial element equivalent circuit (PEEC) method, which applies the mixed potential integral equation (MPIE) with dyadic Green's functions for layered media (DGFLM-PEEC). On the one hand, it represents an exact full-wave semianalytical solution for an arbitrary configuration of traces and via holes in multilayered printed circuit boards. On the other hand, the DGFLM-PEEC model is represented in a circuit form, and thus, may be included in general-purpose circuit simulators. The paper derives a general DGFLM-PEEC formulation, which may be applied to all types of the MPIE with dyadic Green's functions. Using this concept, a particular type of layered media, namely a lossy dielectric between two grounds (stripline region), is thoroughly investigated and used to set up a particular DGFLM-PEEC model. The closed-form expressions for partial inductances and potential coefficients have been derived for this case. The time- and frequency-domain DGFLM-PEEC models for the stripline region have been validated using the measurements and the simulation by the method of moments.