It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms. Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression. Flow cytometry and immunofluorescence assays were performed for the detection of apoptosis and autophagy, respectively. Hearing function and loss of outer hair cells (HCs) in ARHL rats were measured using the auditory brainstem response and cochlear silver nitrate staining, respectively. MSC proliferation was evaluated with the Cell Counting Kit-8 assay. Growth differentiation factor 15 (GDF15) and sirtuin 1 (SIRT1) expression was significantly decreased in hydrogen peroxide (H2O2)-induced House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and the cochlea of ARHL rats. Elevated apoptosis and blocked autophagic flux were uncovered in H2O2-induced HEI-OC1 cells and ARHL rats. GDF15 overexpression inhibited apoptosis and restored autophagic flux in vitro and in vivo. Meanwhile, GDF15 positively regulated SIRT1 protein expression. MSCs-GDF6 not only upregulated GDF15 and SIRT1 expression but also suppressed apoptosis and restored autophagic flux to reduce loss of HCs and hearing loss in ARHL rats. MSCs-GDF6 prevented loss of HCs to relieve ARHL by inhibiting apoptosis and restoring autophagic flux, likely in association with upregulation of the GDF15/SIRT1 axis.
Read full abstract