Human enteric viruses can remain infective in surface waters for extended periods of time, posing a public health risk. Microbial activity contributes to the inactivation of waterborne enteric viruses, but while individual bacteria-virus interactions have been characterized, the importance of microbial diversity remains unknown. Here, we experimentally manipulated the diversity of bacterial communities from Lake Geneva across three seasons using a dilution-to-extinction approach and monitored the inactivation and genome decay of echovirus 11, a member of the Enterovirus genus. Long-read sequencing of the 16S rRNA gene revealed diversity gradients ranging between 373 and 2,722 bacterial species. Compared to sterile controls, echovirus 11 inactivation was enhanced by the presence of active bacteria and depended both on season and sample dilution. Throughout all seasons, the highest inactivation (between 3.0 and 7.9 log10 fold reduction in infectivity over 96 h) was observed in the least diluted incubations (i.e., the highest bacterial richness). Genome decay exhibited a 24-h lag and was less pronounced than the corresponding infectivity loss (ranging between 2.3 and 3.8 log10 fold over 96 h), indicating that microbial inactivation primarily targets the echovirus 11 capsid. We found a positive-saturating relationship between bacterial species richness and viral inactivation, suggesting functional redundancy and pointing toward the importance of rare species for viral inactivation. Biomarker analysis revealed several clades of bacteria, particularly members of Chitinophagaceae, to be significantly associated with echovirus 11 inactivation. Overall, these findings suggest that high microbial diversity enhances the capacity of surface waters to rid themselves of contamination by enteric viruses and hence protects public health.IMPORTANCEHuman enteric viruses in natural waterbodies pose a public health risk. Microorganisms, particularly bacteria, contribute to the inactivation of enteroviruses, thereby mitigating this risk. We use experimental manipulations of lake water bacterial diversity to unravel the importance of diversity for the inactivation of echovirus 11, a model human pathogen. Our findings suggest that bacterial diversity is important for echovirus 11 inactivation and that specific, but numerically rare, bacteria present in the surface water of Lake Geneva across different seasons contribute to viral inactivation. These findings contribute to our understanding of the inactivation of human enteric viruses in natural waterbodies-a hitherto understudied ecosystem service.
Read full abstract