Enhancing the flame retardancy of epoxy (EP) resins typically entailed a trade-off with other physical properties. Herein, hyperbranched poly(amidoamine) (HPAA) and phytic acid (PA) were used to functionalize graphene oxide (GO) via electrostatic self-assembly in water to prepare a phosphorus-nitrogen functionalized graphene oxide nanosheet (PN-GOs), which could be utilized as high efficient flame-retardant additive of epoxy resin without sacrificing other properties. The PN-GOs demonstrated improved dispersion and compatibility within the EP matrix, which resulted in significant concurrent enhancements in both the mechanical performance and flame-retardant properties of the PN-GOs/EP nanocomposites over virgin EP. Notably, the incorporation of just 1.0 wt% PN-GOs yielded a 20.4, 6.4 and 42.7 % increases in flexural strength, flexural modulus and impact strength for the PN-GOs/EP nanocomposites, respectively. Furthermore, simultaneous reductions were achieved in the peak heat release rate (pHRR) by 60.0 %, total smoke production (TSP) by 43.0 %, peak CO production rate (pCOP) by 57.9 %, and peak CO2 production rate (pCO2P) by 63.9 %. This study presented a facile method for the design of GO-based nano flame retardants, expanding their application potential in polymer-matrix composites.