Functional responses are widely used to describe interactions and resource exchange between individuals in ecology. The form given to functional responses dramatically affects the dynamics and stability of populations and communities. Despite their importance, functional responses are generally considered with a phenomenological approach, without clear mechanistic justifications from individual traits and behaviours. Here, we develop a bottom-up stochastic framework grounded in renewal theory that shows how functional responses emerge from the level of the individuals through the decomposition of interactions into different activities. Our framework has many applications for conceptual, theoretical and empirical purposes. First, we show how the mean and variance of classical functional responses are obtained with explicit ecological assumptions, for instance regarding foraging behaviours. Second, we give examples in specific ecological contexts, such as in nuptial-feeding species or size-dependent handling times. Finally, we demonstrate how to analyse data with our framework, especially highlighting that observed variability in the number of interactions can be used to infer parameters and compare functional response models.
Read full abstract