In this paper, a workflow for creating advanced aerodynamics design dashboards is proposed. A CAD modeler is directly linked to the CFD simulation results so that the designer can explore in real time, assisted by virtual reality (VR), how shape parameters affect the aerodynamics and choose the optimal combination to optimize performance. In this way, the time required for the conception of a new component can be drastically reduced because, even at the preliminary stage, the designer has all the necessary information to make more thoughtful choices. Thus, this work sets a highly ambitious and innovative goal: to create a smart design dashboard where every shape parameter is directly and in real-time linked to the results of the high-fidelity analyses. The OPAM (Open Parametric Aircraft Model), a simplified model of the Boeing 787, was considered as a case study. CAD parameterization and mesh morphing were combined to generate the design points (DPs), while Reduced Order Models (ROMs) were developed to link the results of the CFD analyses to the chosen parameterization. The ROMs were exported as FMUs (Functional Mockup Units) to be easily managed in any environment. Finally, a VR design dashboard was created in the Unity environment, enabling the interaction with the geometric model in order to observe in a fully immersive and intuitive environment how each shape parameter affects the physics involved. The MetaQuest 3 headset has been selected for these tests. Thus, the use of VR for a design platform represents another innovative aspect of this work.
Read full abstract