This paper deals with the existence,uniqueness and asymptotic behaviors of mild solutions to neutral stochastic delay functional integrodifferential equations with impulsive effects, perturbed by a fractional Brownian motion B H , with Hurst parameter \({H \in (\frac{1}{2},1)}\). We use the theory of resolvent operators developed in Grimmer (Trans Am Math Soc 273(1982):333–349, 2009) to show the existence of mild solutions. An example is provided to illustrate the results of this work.