Phonetics is the scientific field concerned with the study of how speech is produced, heard, and perceived. It abounds with data, such as acoustic speech recordings, neuroimaging data, or articulatory data. In this article, we provide an introduction to different areas of phonetics (acoustic phonetics, sociophonetics, speech perception, articulatory phonetics, speech inversion, sound change, and speech technology), an overview of the statistical methods for analyzing their data, and an introduction to the signal processing methods commonly applied to speech recordings. A major transition in the statistical modeling of phonetic data has been the shift from fixed effects to random effects regression models, the modeling of curve data (for instance, via generalized additive mixed models or functional data analysis methods), and the use of Bayesian methods. This shift has been driven in part by the increased focus on large speech corpora in phonetics, which has arisen from machine learning methods such as forced alignment. We conclude by identifying opportunities for future research.
Read full abstract