Abstract
This study investigates the impact of advanced driver-assistance systems on drivers' mental workload. Using a combination of physiological signals including ECG, EMG, EDA, EEG (af4 and fc6 channels from the theta band), and eye diameter data, this study aims to predict and categorize drivers’ mental workload into low, adequate, and high levels. Data were collected from five different driving situations with varying cognitive demands. A functional linear regression model was employed for prediction, and the accuracy rate was calculated. Among the 31 tested combinations of physiological variables, 9 combinations achieved the highest accuracy result of 90%. These results highlight the potential benefits of utilizing raw physiological signal data and employing functional data analysis methods to understand and assess driver mental workload. The findings of this study have implications for the design and improvement of driver-assistance systems to optimize safety and performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.