The pyroelectric nanogenerator (PyNG) has gained increasing attention due to its capability of converting ambient or waste thermal energy into electrical energy. In recent years, nanocomposite films of poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) and nanofillers such as reduced graphene oxide (rGO) have been employed due to their high flexibility, good dielectric properties, and high charge mobility for the application of wearable devices. This work investigated the effect of rGO reduction on pyroelectric nanogenerator performance. To prepare rGO, GO was reduced with different reducing agents at various conditions. The resulting rGO samples were characterized by XPS, FT-IR, XRD, and electrical conductivity measurements to obtain quantitative and qualitative information on the change in surface functionalities. Molecularly thin nanocomposite films of P(VDF-TrFE)/rGO were deposited on an ITO-glass substrate by the Langmuir-Schaefer (LS) technique. A PyNG sandwich-like structure was fabricated by arranging the thin films facing each other, and it was subjected to the pyroelectric current test. For various PyNGs of the thin films containing rGO prepared by different methods, the average pyroelectric peak-to-peak current (APC) and the pyroelectric coefficient (p) values were measured. It was found that a more reduced rGO resulted in higher electrical conductivity, and the thin films containing rGO of higher conductivity yielded higher APC and p values and, thus, better energy-harvesting performance. However, the thin films having rGO of too high conductivity produced slightly reduced performance. The Maxwell-Wagner effect in the two-phase system successfully explained these optimization results. In addition, the APC and p values for the thin film with the best performance increased with increasing temperature range. The current PyNG's performance with an energy density of 3.85 mW/cm2 and a p value of 334 μC/(m2∙K) for ΔT = 20 °C was found to be superior to that reported in other studies in the literature. Since the present PyNG showed excellent performance, it is expected to be promising for the application to microelectronics including wearable devices.
Read full abstract