The glycosylation of proteins and lipids has various essential roles in a diverse range of biological processes, including embryogenesis, organ development, neurogenesis, maintenance of homeostasis, immune response, and tumorigenesis. Drosophila melanogaster is one of the representative multicellular model organisms, which have many useful genetic manipulation tools; it is used in developmental biology as well as classical and molecular genetics. Glycobiology is not an exception and many studies using Drosophila have been performed in this field to clarify novel functions of glycans. Recently, genome-wide screening and functional analyses were performed in whole body, wings, eyes, neuromuscular junctions, and immune organs. Furthermore, detailed studies with Drosophila mutants of glycosyltransferases, nucleotide sugar transporters, and glycosidases revealed novel functions of N-linked glycans, glycosaminoglycans, glycolipids, and O-linked glycans including mucin type O-glycan, O-Fuc, O-Man, and O-GlcNAc. As many of these functions are common between Drosophila and humans, these mutants represent good models for human disease. In this review, recent studies of glycan functions using Drosophila are summarized.
Read full abstract