A distributed adaptive fuzzy event-triggered bipartite formation tracking control scheme is proposed for switched nonlinear multi-agent systems (MASs) with function constraints on states. Fuzzy logic systems (FLSs) are used to identify uncertain items. To improve the transient performance of the system, a fixed-time prescribed performance function (FTPPF) is introduced to make the formation error converge to a prescribed boundary range within a fixed time. Considering that the state constraint boundary is restricted by multiple pieces of information (historical state, topological relationship, neighbor agent output, leader signal and time), a tan-type barrier Lyapunov function (BLF) is constructed to address the challenges brought by the state function constraint. The shortcoming of the “explosion of complexity” is compensated by fusing the backstepping control and command filter. To mitigate the communication burden while ensuring a steady-state performance, a distributed event-triggered fixed-time bipartite formation control scheme is proposed. Finally, the performance of the proposed control method is verified by an MAS consisting of four followers and one leader.
Read full abstract