Abstract Design space exploration and margin analysis can inform critical decisions early in engineering design, helping to handle the uncertainties of early design while ensuring design performance. In practice, the complexity of many products makes such decision-making challenging. This paper addresses the challenge with a new design framework that relies on the margin value method to evaluate sets of concepts that are combinatorially generated from an enhanced function-means tree. The basis for concept comparison is the margin value in each design alternative. The margin value method is expanded to address a broad class of design problems by using surrogate models and novel metrics for evaluating different conceptual alternatives. Visualization tools are introduced to support the evaluations. The efficacy of the framework is demonstrated using the design of a structural aero-engine component involving simulation models and uncertain load specifications. Overall, this paper shows how design concepts can be compared objectively and distilled to a set of alternatives that would retain their values throughout product development.
Read full abstract