Abstract Disturbance of epigenetic processes can lead to altered gene function and malignant cellular transformation. In particular, changes in the epigenetic landscape are a central topic in cancer biology. The initiation and progression of cancer are now recognized to involve both epigenetic and genetic alterations. In this paper, we study the epigenetic mechanism (related to the tumor microenvironment) responsible for increasing tumor-associated macrophages that promote the occurrence and metastasis of tumor cells, support tumor angiogenesis, inhibit T-cell-mediated anti-tumor immune response, and lead to tumor progression. We show that the tumor benefits from the macrophages’ high degree of plasticity and larger epigenetic basins corresponding to phenotypes that favor cancer development through a process that we call noise-induced polarization. Moreover, we propose a mechanism to promote the appropriate epigenetic stability for immunotherapies involving macrophages, which includes p53 and APR-246 (eprenetapopt). Our results show that a combination therapy may be necessary to ensure the proper epigenetic stability of macrophages, which otherwise will contribute to cancer progression. On the other hand, we conclude that macrophages may remain in the anti-tumoral state in types of cancer that exhibit less TP53 mutation, like colorectal cancer; in these cases, macrophages’ immunotherapy may be more suitable. We finally mention the relevance of the epigenetic potential (Waddington’s landscape) as the backbone for our study, which encapsulates the biological information of the system.
Read full abstract