This study assessed microorganisms in personal inhalable work air samples aiming to identify potential human pathogens, and correlate exposure to adverse health outcomes in waste workers. Full-shift personal exposure was measured in six different waste sorting plants. Microbial concentrations in inhalable air samples were analysed using MALDI-TOF MS for cultivable, and next generation sequencing (NGS) for non-cultivable microorganisms. Concentrations of bacterial and fungal CFUs varied substantially within and between waste sorting plants, ranging from no identifiable organisms to a maximum concentration in the order of 105 CFU/m3. Bacillus and Staphylococcus were among the most abundant bacterial genera, whilst fungal genera were dominated by Aspergillus and Penicillium. Approximately 15% of all identified species were human pathogens classified in risk group 2, whereas 7% belonged to risk group 1. Furthermore, significant correlations between concentrations of fungi in risk group 1 and self-reported adverse symptoms, such as wheezing were identified in exposed workers. The combination of culture-based methods and NGS facilitated the investigation of infectious microbial species with potential pathophysiological properties as well as non-infectious biological agents in inhalable work air samples and thereby contributed to the risk assessment of occupational exposure in waste sorting.