The analysis of ionic compounds by liquid chromatography is challenging due to the interaction of analytes with the metal surface of the instrument and the column, leading to poor peak shape and decreased sensitivity. The use of bioinert materials in the chromatographic system minimizes these unrequired interactions. In this work, the ultrahigh-performance liquid chromatography (UHPLC) with bioinert components was connected to a high-resolution mass spectrometer to develop a method for untargeted metabolomic analysis. 81 standards of metabolites were used for the development and optimization of the method. In comparison to the conventional chromatographic system, the application of bioinert technology resulted in significantly improved peak shapes and increased sensitivity, especially for metabolites containing phosphate groups. The calibration curves were constructed for the evaluation of the method performance, showing a wide dynamic range, low limit of detection, and linear regression coefficients higher than 0.99 for all standards. The optimized method was applied to the analysis of NIST SRM 1950 human plasma, which allowed the detection of 156 metabolites and polar lipids based on the combination of mass accuracy in the full-scan mass spectra in both polarity modes, characteristic fragment ions in MS/MS, and logical chromatographic behavior leading to the high confidence level of annotation/identification. We have demonstrated an improvement in the peak shapes and sensitivity of ionic metabolites using bioinert technology, which indicates the potential for the analysis of other ionic compounds, e.g., molecules containing phosphate groups.
Read full abstract