Intracellular fibril formation by Ure2p produces the non-Mendelian genetic element [URE3] in Saccharomyces cerevisiae, making Ure2p a prion protein. We show that solid-state NMR spectra of full-length Ure2p fibrils, seeded with infectious prions from a specific [URE3] strain and labeled with uniformly 15N–13C-enriched Ile, include strong, sharp signals from Ile residues in the globular C-terminal domain (CTD) with both helical and nonhelical 13C chemical shifts. Treatment with proteinase K eliminates these CTD signals, leaving only nonhelical signals from the Gln-rich and Asn-rich N-terminal segment, which are also observed in the solid-state NMR spectra of Ile-labeled fibrils formed by residues 1–89 of Ure2p. Thus, the N-terminal segment, or “prion domain” (PD), forms the fibril core, while CTD units are located outside the core. We additionally show that, after proteinase K treatment, Ile-labeled Ure2p fibrils formed without prion seeding exhibit a broader set of solid-state NMR signals than do prion-seeded fibrils, consistent with the idea that structural variations within the PD core account for prion strains. Measurements of 13C–13C magnetic dipole–dipole couplings among 13C-labeled Ile carbonyl sites in full-length Ure2p fibrils support an in-register parallel β-sheet structure for the PD core of Ure2p fibrils. Finally, we show that a model in which CTD units are attached rigidly to the parallel β-sheet core is consistent with steric constraints.
Read full abstract