Despite initial high response rates to first-line EGFR TKI, all non-small-cell lung cancer (NSCLC) with EGFR-activating mutation will ultimately develop resistance to treatment. Identification of resistance mechanisms is critical to adapt treatment and improve patient outcomes. Here, we show that a PPP3CB transcript that encodes full-length catalytic subunit 2B of calcineurin accumulates in EGFR-mutant NSCLC cells with acquired resistance against different EGFR TKIs and in post-progression biopsies of NSCLC patients treated with EGFR TKIs. Neutralization of PPP3CB by siRNA or inactivation of calcineurin by cyclosporin A induces apoptosis in resistant cells treated with EGFR TKIs. Mechanistically, EGFR TKIs increase the cytosolic level of calcium and trigger activation of a calcineurin/MEK/ERK pathway that prevents apoptosis. Combining EGFR, calcineurin, and MEK inhibitors overcomes resistance to EGFR TKI in both in vitro and in vivo models. Our results identify PPP3CB overexpression as a new mechanism of acquired resistance to EGFR TKIs, and provide a promising therapeutic approach for NSCLC patients that progress under TKI treatment.
Read full abstract