Although soluble guanylyl cyclase (sGC) functions in an environment in which O(2), NO, and CO are potential ligands for its heme moiety, the enzyme displays a high affinity for only its physiological ligand, NO, but has a limited affinity for CO and no affinity for O(2). Recent studies of a truncated version of the sGC beta(1)-subunit containing the heme-binding domain (Boon, E. M., Huang, S H., and Marletta, M. A. (2005) Nat. Chem. Biol., 1, 53-59) showed that introduction of the hydrogen-bonding tyrosine into the distal heme pocket changes the ligand specificity of the heme moiety and results in an oxygen-binding sGC. The hypothesis that the absence of hydrogen-bonding residues in the distal heme pocket is sufficient to provide oxygen discrimination by sGC was put forward. We tested this hypothesis in a context of a complete sGC heterodimer containing both the intact alpha(1)- and beta(1)-subunits. We found that the I145Y substitution in the full-length beta-subunit of the sGC heterodimer did not produce an oxygen-binding enzyme. However, this substitution impeded the association of NO and destabilized the NO.heme complex. The tyrosine in the distal heme pocket also impeded both the binding and dissociation of the CO ligand. We propose that the mechanism of oxygen exclusion by sGC not only involves the lack of hydrogen bonding in the distal heme pocket, but also depends on structural elements from other domains of sGC.
Read full abstract