An open rotor blade failure and release event can result in a high energy impact on an aircraft fuselage that can reduce the strength of the structure and challenge the safe continuation of the flight and landing. This work highlights the development of a numerical approach and methodology in order to improve the assessment of the damage predictions of a composite propeller blade impact against the fuselage of an aircraft to be able to estimate a minimum thickness of shielding for the full protection of the airframe. A number of dynamic simulations were carried out, from rigid up to deformable and frangible projectiles at different angles of incidence, varying the material and the thicknesses using Abaqus/Explicit. The finite element (FE) models for blade and target were calibrated and validated separately allowing to capture the right behavior and failure modes. Impact tests of partial blade fragments against stiffened composite panels were correlated with simulations and the obtained results show a good agreement regarding deformations and delaminated area. Finally, a full blade FE model was generated and used for the fuselage impact numerical analysis. This was done within the frame of the Open Rotor project funded by Clean Sky European research programme.
Read full abstract