In order to enhance spectrum utilization and decrease transmission delay, the 6th generation mobile networks (6G) system adopts full-duplex (FD) mode. Simultaneous operation of the same frequency inevitably causes the receiver to receive the signal sent by the transmitter, leading to serious nonlinear self-interference due to the nonlinear distortion generated by the power amplifier (PA). This paper proposes hybrid layer structures SW-GRU-TPA for the implementation of digital self-interference cancellation (SIC), combined with Sliding Window (SW), Gated Recurrent Unit (GRU), and Temporal Pattern Attention (TPA). The model can not only effectively utilize the influence of historical information on the signal, but also capture the spatial and temporal dependencies in the data to fit the nonlinear characteristics of the PA and the delay effect in multipath transmission. Meanwhile, by utilizing the L1 norm model pruning, the model parameters can be optimized, leading to improved processing efficiency. The model is verified using two methods: injection and antenna reception. Compared to the SW-GRU model with Attention Mechanism (AM), the Interference Cancellation Ratio (ICR) of injection and antenna increases by 3.13 dB and 2.01 dB, respectively. When the TPA is compressed by 42.17%, the ICR of injection and antenna decreases by 1.58% and 2.6%.
Read full abstract