Abstract

In this paper, passive Intelligent Reflecting Surface (IRS) is used to enhance the performance of a Full Duplex (FD) bidirectional Machine Type Communication (MTC) system with two source nodes. Each node is equipped with two antennas to operate in FD mode. In reality, self-interference and discrete phase shifting are two major impairments in FD and IRS-assisted communication, respectively. The self-interference at source nodes operating in FD mode is mitigated by increasing the number of meta-surface elements at the IRS. Bit Error Rate (BER) and outage performances are analyzed with continuous phase shifting and discrete phase shifting in IRS. Closed-form analytical expressions are derived for the outage probability and BER performances of the IRS-assisted bidirectional FD-MTC system with a continuous phase shifter. The outage and BER performances of the IRS-assisted bidirectional MTC system in the FD mode have Signal-to-Noise Ratio (SNR) improvement compared with the IRS-assisted bidirectional MTC system in Half Duplex (HD) mode, as the number of reflecting elements in IRS is doubled in the FD mode. The outage and BER performances are degraded by a discrete phase shifter. Hence, performance degradation of the proposed IRS-assisted bidirectional FD-MTC is examined for 1-bit shifter (0, π), 2-bit shifter (0, π/2, π, 3π/2), and for 3-bit shifter (0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4). The performance degradation when a discrete phase shifter is employed in IRS is compared with the ideal continuous phase shifter in IRS. Further, achievable rate analysis is carried out for finding the best location of the IRS in a bidirectional FD-MTC system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call