In view of the major depressive disorder characteristics such as high mortality as well as high recurrence, it is important to explore an objective and effective detection method for major depressive disorder. Considering the advantages complementary of different machine learning algorithms in information mining process, as well as the fusion complementary of different information, in this study, the spatial-temporal electroencephalography fusion framework using neural network is proposed for major depressive disorder detection. Since electroencephalography is a typical time series signal, we introduce recurrent neural network embedded in long short-term memory unit for extract temporal domain features to solve the problem of long-distance information dependence. To reduce the volume conductor effect, the temporal electroencephalography data are mapping into a spatial brain functional network using phase lag index, then the spatial domain features were extracted from brain functional network using 2D convolutional neural networks. Considering the complementarity between different types of features, the spatial-temporal electroencephalography features are fused to achieve data diversity. The experimental results show that spatial-temporal features fusion can improve the detection accuracy of major depressive disorder with a highest of 96.33%. In addition, our research also found that theta, alpha, and full frequency band in brain regions of left frontal, left central, right temporal are closely related to MDD detection, especially theta frequency band in left frontal region. Only using single-dimension EEG data as decision basis, it is difficult to fully explore the valuable information hidden in the data, which affects the overall detection performance of MDD.Meanwhile, different algorithms have their own advantages for different application scenarios. Ideally, different algorithms should use their respective advantages to jointly address complex problems in engineering fields.To this end, we propose a computer-aided MDD detection framework based on spatial-temporal EEG fusion using neural network, as shown in Fig.1. The simplified process is as follows: (1) Raw EEG data acquisition and preprocessing. (2) The time series EEG data of each channel are input as recurrent neural network (RNN), and RNN is used to process and extract temporal domain (TD) features. (3) The BFN among different EEG channels is constructed, and CNN is used to process and extract the spatial domain (SD) features of the BFN. (4) Based on the theory of information complementarity, the spatial-temporal information is fused to realize efficient MDD detection. Fig. 1 MDD detection framework based on spatial-temporal EEG fusion.
Read full abstract