The novel tumor necrosis factor (TNF-New or TNFN) gene has been identified only in teleost such as zebrafish, medaka (Oryzias latipes), fugu (Takifugu rubripes), and rainbow trout (Oncorhynchus mykiss). In this study, a putative TNFN gene in rock bream (named RB-TNFN) was cloned and its functional expression in the immune system was analyzed. Although it was previously reported to share a high degree of homology with mammalian lymphotoxin (LT)-β, in silico analysis revealed that RB-TNFN differed slightly from mammalian LT-β in its genomic structure, phylogenetic relationship, and predicted protein tertiary structure, whereas the genomic location of TNFN (immediately behind TNF-α) was the same as that of LT-β. In healthy rock bream, RB-TNFN gene expression was the highest in the liver and the lowest in the head kidney. In vitro, it was significantly upregulated in head kidney cells following polyinosinic:polycytidylic acid, concanavalin A, phytohemagglutinin, or calcium ionophore (CI) stimulation and in spleen cells by lipopolysaccharide (LPS), CI, and rock bream iridovirus (RBIV). In vivo, it was upregulated in the spleen, liver, and gut on day 1 and in the blood on day 3 following LPS injection, and in the blood, head kidney, and liver following RBIV vaccination. Post-RBIV infection, the vaccinated group showed a significantly higher TNFN gene expression in the head kidney and blood than the unvaccinated group. Treatment with recombinant TNFN protein (RB-rTNFN) resulted in significantly upregulated interleukin-1β expression in the head kidney, spleen, blood, liver, and peritoneal cells. It also enhanced IL-8 gene expression in the head kidney, blood, and peritoneal cells, and interferon γ gene expression in the gut and gills on day 1. TNFN and cyclo-oxygenase-2 gene expression was upregulated in peritoneal cells on day 3. Flow cytometry analysis revealed a significant increase in the peritoneal lymphocyte population after the intraperitoneal (i.p.) injection of RB-rTNFN. These results suggest that RB-TNFN mediated innate and adaptive immunity in rock bream.