The high-pressure common rail (HPCR) injection system, a key technology for enhancing diesel engine performance, plays a decisive role in ensuring fuel injection precision and combustion efficiency through rail pressure stability. This study establishes a coupled simulation model of an electronically controlled HPCR injection system and a diesel engine, using GT-Suite to systematically investigate the effects of fuel supply pressure, camshaft speed, high-pressure pump plunger parameters, and inlet and outlet valve characteristics on rail pressure fluctuations. Gray relational analysis quantifies the correlation between these factors and rail pressure variations. The results demonstrate that increasing camshaft speed, injection pulse width, plunger mass, plunger length, plunger spring preload, inlet valve spring preload, and outlet valve body mass reduces rail pressure fluctuations, while variations in fuel supply pressure, plunger spring stiffness, and valve spring stiffness have minimal impact. Notably, the influence of outlet valve spring preload, inlet valve spring stiffness, and inlet valve body mass on rail pressure is nonlinear, with optimal values observed. Gray relational analysis further identifies inlet valve spring preload as having the highest correlation with rail pressure fluctuations (0.815), followed by inlet valve spring stiffness (0.625), with outlet valve spring preload (0.551) and stiffness (0.527) showing relatively lower correlations. This study provides valuable insights for optimizing the HPCR injection system design and contributes to advancements in diesel engine technology.
Read full abstract