The multistage oxidation configuration consists of a set of serially connected fuel cell stacks. By connecting the stacks serially, more homogenous current distribution over the cell surface can be achieved resulting in lower irreversible losses. This article presents a detailed assessment of multistage oxidation by flowsheet calculations in which the influence of operating temperature and gas composition on the fuel cell performance is incorporated. A 250 kW molten carbonate fuel cell (MCFC) combined heat and power (CHP) plant is used as reference and the fuel cell stack unit is substituted by two serially connected units ( N=2). Two multistage configurations are examined: (A) both anode and cathode flows are serially connected; (B) only the anode flow is serially connected while the cathode flow is parallel connected. For all systems, the total cell active area, cell current density, overall fuel utilization and gas temperature at the inlet and outlet of the fuel cell array are kept constant. Fuel cell performance at the operating conditions is calculated using a numerical model of the flowsheeting program. Influences of operating temperature and gas composition on the cell performance are incorporated using empirical relations that describe irreversible losses of the cell as function of these parameters. System performances are compared in order to assess the benefits of the multistage oxidation configurations. Differences in performance between the two multistage oxidation configurations are studied by analyzing the difference in exergy loss of stacks, stack power output, cooling requirement and cathode gas massflow and composition. Detailed flowsheet calculations show that the improvement in efficiency is about 0.6% for configuration A, and 0.8% for configuration B. Improvements are obtained by the enhanced fuel cell power output while the expander power output is slightly reduced. Heat output is slightly reduced due to the improved fuel cell conversion. Analysis of stack output revealed a intricate interaction between stack and the rest of the fuel cell system. Their mutual influences are examined and the results explain differences in results between configuration A and B.
Read full abstract