When handling ammunition for gun loading, epithelial cells from the hands can become adhered to the metal surface, and this trace is a potential source of DNA. This work aimed to compare the efficiency of three DNA extraction methods from fired cartridge cases from three different types of firearms: a 12-gauge shotgun, a point 40 S&W pistol, and a 7.62 mm rifle. Nine volunteers were involved in this study handling 42 pieces of ammunition overall. The unfired ammunition was handled by a known good donor, and we used this data for comparison. DNA profiling was carried out with EZ1 DNA Investigator Kit for EZ1 Advanced XL automated DNA extraction, QIAmp DNA Investigator kit for a non-automated silica-based membrane column method, and direct lysis protocol for a non-automated in-house one. Samples were collected with 0.5 × 0.5 cm pieces of FTA filter paper moistened with distilled water. Quantiplex Pro RGQ kit and Fusion Powerplex 6C were used for genotyping samples. QIAmp DNA Investigator method resulted in the best number of alleles recovered for both conditions tested, both unfired and fired ammunitions: 77 % vs. 19.3 %, followed by the automated extraction (28.6 % vs. 4.3 %) and lysis protocol (0 % vs. 3.9 %). Degradation data from fired cartridge cases were 27 % for column method, 50 % for lysis protocol, and 87 % for EZ1 kit. Kruskal-Wallis test for mean DNA concentration from these samples returned p < 0.05, and Dunn’s multiple comparison test indicated a significant difference between calibers 0.40 S&W and 12-gauge shotgun from lyses protocol method. We did not detect any other significant differences on the test. The 12-gauge shotgun cartridge cases resulted in a high number of alleles overall (56.8 %). The numerous steps for DNA extraction and purification in the column method may explain its better performance. Although the results obtained indicate that all methods be used for DNA extraction from this type of evidence, the silica-based membrane column method appears to be more efficient.
Read full abstract