Anthocyanins (ACNs) possess strong antioxidants, anti-cancer, anti-obesity, anti-diabetic, and anti-inflammatory properties but are limited use by their susceptibility to environmental factors. This study aims to overcome these limitations by developing and assessing a novel coacervate system, consisting of potato protein isolate (PPI) combined with various polysaccharides, to stabilize and encapsulate anthocyanins from black carrot concentrate The polysaccharides included in this system include inulin, gum Arabic, guar gum, pectin, and soluble fiber. The coacervate system's effectiveness in maintaining stability and increasing the bioavailability of anthocyanins was evaluated compared to conventional soybean protein-based systems. The results show that pH considerably influences potato protein solubility, with maximum solubility at strongly acidic (pH 2) conditions. Hygroscopicity and moisture content analysis of the coacervates showed significant variations, with potato protein-guar gum (PPIGG) microcapsules having the lowest moisture content and potato protein gum Arabic (PPIGA) microcapsules having the highest moisture content. SEM imaging illustrated distinct microcapsule morphologies, while FT-IR measurement verified the successful integration of proteins and polysaccharides. The significance of the research reflects its proof that potato protein isolate (PPI) based coacervate systems consists of potato protein with polysaccharides, particularly those containing gum Arabic and pectin, have significant potential for improving anthocyanin stability and bioavailability. These findings guide future studies to investigate other polysaccharides, improve coacervation processes, and explore applications in the food and nutraceutical sectors. It also offers valuable insights for creating efficient encapsulation techniques for bioactive substances.
Read full abstract