The role of various magnetic interchain couplings is investigated by numerical methods in doped frustrated quantum spin chains. A nonmagnetic dopant introduced in a gapped spin chain releases a free spin-1/2 soliton. The formation of a local magnetic moment is analyzed in terms of soliton confinement. A four-spin coupling which might originate from cyclic exchange is shown to produce such a confinement. Dopants on different chains experience an effective space-extended nonfrustrating pairwise spin interaction.
Read full abstract