Sleep deprivation (SD) has negative effects on brain and body function. Sleep problems are prevalent in a variety of disorders, including neurodevelopmental and psychiatric conditions. Thus, understanding the molecular consequences of SD is of fundamental importance in biology. In this study, we present the first simultaneous bulk and single-nuclear RNA sequencing characterization of the effects of SD in the male mouse frontal cortex. We show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 5, and produces isoform switching of over 1500 genes, particularly those involved in splicing and RNA binding. At both the global and cell-type specific level, SD has a large repressive effect on transcription, downregulating thousands of genes and transcripts. As a resource we provide extensive characterizations of cell-types, genes, transcripts, and pathways affected by SD. We also provide publicly available tutorials aimed at allowing readers adapt analyses performed in this study to their own datasets.