The origin of the pseudogap and superconducting behaviors in high-Tc superconductors is proposed, based on the picture of Euclidean Q-balls formation that carry Cooper/local-pair condensates inside their volumes. Euclidean Q-balls that describe bubbles of collective spin-/charge density fluctuations (SDW/CDW) oscillating in Matsubara time are found as a new self-consistent solution of the Eliashberg equations in the ‘nested’ repulsive Hubbard model of high-Tc superconductors. The Q-balls arise due to global invariance of the effective theory under the phase rotation of the Fourier amplitudes of SDW/CDW fluctuations, leading to conservation of the ‘Noether charge’ Q in Matsubara time. Due to self-consistently arising local minimum of their potential energy at finite amplitude of the density fluctuations, the Q-balls provide greater binding energy of fermions into local/Cooper pairs relative to the usual Frohlich mechanism of exchange with infinitesimal lattice/charge/spin quasiparticles. We show that around some temperature T* the Q-balls arise with a finite density of superconducting condensate inside them. The Q-balls expand their sizes to infinity at superconducting transition temperature Tc. The fermionic spectral gap inside the Q-balls arises in the vicinity of the ‘nested’ regions of the bare Fermi surface. Solutions are found analytically from the Eliashberg equations with the ‘nesting’ wave vectors connecting ‘hot spots’ in the Brillouin zone. The experimental ‘Uemura plot’ of the linear dependence of Tc on superconducting density ns in high-Tc superconducting compounds follows naturally from the proposed theory.
Read full abstract