Alignment precision is a crucial factor that directly impacts overlay accuracy, which is one of three fundamental indicators of lithography. The alignment method based on the Moiré fringe has the advantages of a simple measurement optical path and high measurement accuracy. However, it requires strict control of the distance between the mask and wafer to ensure imaging quality. This limitation restricts its application scenarios. A depth–DOF (depth of focus) Moiré fringe alignment by broad–spectrum modulation is presented to enhance the range of the alignment signals. This method establishes a broad–spectrum Moiré fringe model based on the Talbot effect principle, and it effectively covers the width of dark field (WDF) between different wavelength imaging ranges, thereby extending the DOF range of the alignment process, and employs a hybrid of genetic algorithms and the particle-swarm optimization (GA–PSO) algorithm to combine various spectral components in a white spectrum. By calculating the optimal ratio of each wavelength and using white light incoherent illumination in combination with this ratio, it achieves the optimal DOF range of a broad–spectrum Moiré fringe imaging model. The simulation results demonstrate that the available DOF range of the alignment system has been expanded from 400 μm to 800 μm. Additionally, the alignment precision of the system was analyzed, under the same conditions, and the accuracy analysis of the noise resistance, translation amount, and tilt amount was conducted for the Moiré fringe and broad–spectrum Moiré fringe. Compared to a single wavelength, the alignment precision of the broad–spectrum Moiré fringe decreased by an average of 0.0495 nm, equivalent to a 1.5% reduction in the original alignment precision, when using a 4 μm mask and a 4.4 μm wafer. However, the alignment precision can still reach 3.795 nm, effectively enhancing the available depth of focus range and reducing the loss of alignment precision.
Read full abstract