Abstract

The Exoplanet Explorer common-path coherent-dispersion spectrometer (CODES) utilizes a unique combination of an asymmetric common path Sagnac interferometer and a low to medium resolution spectrometer. The ideal optical range difference (OPD) interval for CODES is OPD ∈ {15.06 mm, 19.45 mm}; however, the OPD of CODES is 64.3 mm to achieve better detection accuracy. Though they will increase the accuracy of detection, large OPDs outside of the ideal interval will also reduce the contrast of the interference fringes, making phase changes more hazy. This may also significantly affect the radial velocity inversion and reduce CODES's instrumental accuracy. This study creates an inverse tone mapping operator based on the photographic model and designs an inverse tone mapping algorithm called CODESCE. The outcomes of the experiments demonstrate that the tone mapping algorithm CODESCE in this work is appropriate for enhancing the contrast of interference fringe images with high OPD, and it can enhance the contrast of interference fringes by three orders of magnitude when OPD = 64.3 mm; the processed interference fringes are located in the range of interference fringe curves of the optimal OPD. By comparison with other current approaches, the suggested algorithm yields superior processing outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.