Let \(G=(V,E)\) be a graph. Then the first and second entire Zagreb indices of \(G\) are defined, respectively, as \(M_{1}^{\varepsilon}(G)=\displaystyle \sum_{x \in V(G) \cup E(G)} (d_{G}(x))^{2}\) and \(M_{2}^{\varepsilon}(G)=\displaystyle \sum_{\{x,y\}\in B(G)} d_{G}(x)d_{G}(y)\), where \(B(G)\) denotes the set of all 2-element subsets \(\{x,y\}\) such that \(\{x,y\} \subseteq V(G) \cup E(G)\) and members of \(\{x,y\}\) are adjacent or incident to each other. In this paper, we obtain the entire Zagreb indices of the line graph and line cut-vertex graph of the subdivision graph of the friendship graph.
Read full abstract