A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice. The production of MPs promotes benefits, including reducing deforestation and CO2 emissions. Several microorganism types, such as bacteria, yeast, fungi, and algae, use a variety of substrates for MP production, from agricultural residues to lignocellulosic biomass. These complex substrates, including lignocellulosic biomass, are converted to fermentable sugar through either chemical, physical, or biological methods. Indeed, fermentation can occur through submerged cultures or other methods. However, this depends on the substrate and microorganisms being utilized. MPs have properties that make them versatile and useful ingredients in various applications. Using residues and lignocellulosic biomass as raw materials for producing MPs offers sustainability, cost-effectiveness, and waste reduction advantages. These properties are consistent with the principles established by green chemistry, which aims to conserve resources effectively and operate sustainably in all areas. This review highlights the importance of studying manufacturing aspects and the characteristics associated with MPs, which can be implemented to solve problems and encourage novel methods in the global food/feed industry.
Read full abstract