Hydrodynamic approaches that treat granular materials as a continuum via the homogenization of discrete flow properties have become viable options for efficient predictions of bulk flow behaviours. However, simplified boundary conditions in computational fluid dynamics are often adopted, which have difficulty in describing the complex stick–slip phenomenon at the boundaries. This paper extends the lattice Boltzmann method for granular flow simulations by incorporating a novel frictional boundary condition. The wall slip velocity is first calculated based on the shear rate limited by the Coulomb friction, followed by the reconstruction of unknown density distribution functions through a modified bounce-back scheme. Validation is performed against a unique plane Couette flow configuration, and the analytical solutions for the flow velocity profile and the wall slip velocity, as functions of the friction coefficient, are reproduced by the numerical model. The transition between no-slip and partial-slip regimes is captured well, but the convergence rate drops from second order to first order when slip occurs. The rheological parameters and the basal friction coefficient are calibrated further against the discrete element simulation of a square granular column collapsing over a horizontal bottom plane. It is found that the calibrated continuum model can predict other granular column collapses with different initial aspect ratios and slope inclination angles, including the basal slip and the complex internal flow structures, without any further adjustments to the model parameters. This highlights the generalization ability of the numerical model, which has a wide range of application in granular flow predictions and controls.
Read full abstract