Improved regional and interregional stratigraphic correlations of Pennsylvanian strata permit comparisons of vegetational changes in Euramerican coal swamps. The coal-swamp vegetation is known directly from in situ coal-ball peat deposits from more than 65 coals in the United States and Europe. Interpretations of coal-swamp floras on the basis of coal-ball peat studies are extended to broader regional and stratigraphic patterns by use of coal palynology. Objectives of the quantitative analyses of the vegetation in relation to coal are to determine the botanical constituents at the peat stage and their environmental implications for plant growth and peat accumulation. Morphological and paleoecological analyses provide a basis for deducing freshwater regimes of coal swamps. Changes in composition of Pennsylvanian coal-swamp vegetation are quire similar from one paralic coal region to another and show synchrony that is attributable to climate. Paleobotany and paleogeography of the Euramerican province indicate a moist tropical paleoclimate. Rainfall, runoff and evapotranspiration were the variable climatic controls in the distribution of coal-swamp vegetation, peat accumulation and coal resources. In relative terms of climatic wetness the Pennsylvanian Period is divisible into five intervals, which include two relatively drier intervals that developed during the Lower-Middle and Middle-Upper Pennsylvanian transitions. The climate during Early Pennsylvanian time was moderately wet and the median in moisture availability. Early Middle Pennsylvanian was drier, probably seasonally dry-wet; late Middle Pennsylvanian was the wettest in the Midcontinent; early Late Pennsylvanian was the driest; and late Late Pennsylvanian was probably the wettest in the Dunkard Basin. The five climatic intervals represent a general means of dividing coal resources within each region into groups with similar botanical constituents and environments of peat accumulation. Regional differences in basinal geology and climate were significant variables, but the synchronous control of paleoclimate was of primary importance.