Freshwater mussels provide invaluable ecological services but are threatened by habitat alteration, poor water quality, invasive species, climate change, and contaminants, including contaminants of emerging concern (CECs). Contaminants of emerging concerns are well documented in aquatic environments, including the Great Lakes Basin, but limited information is available on how environmentally relevant mixtures affect freshwater mussel biology throughout their varied life stages. Our main goal was to assess mussels' reproductive output in response to exposure to agricultural and urban CEC mixtures during glochidial development through juvenile transformation and excystment focusing on how exposure duration and treatment affect: (1) the number of glochidia prematurely released by brooding females, (2) glochidial transformation through host-fish excystment, and (3) the number of fully metamorphosed juveniles able to continue the lifecycle. Mussels and host fish were exposed to either a control water (CW), control ethanol (CE), agriculture CEC mixture (AM), or urban CEC mixture (UM) for 40 and 100 days. We found no effect from treatment or exposure duration on the number of glochidia prematurely released. Fewer partially and fully metamorphosed AM juveniles were observed during the 100-day exposure, compared with the 40-day. During the 40-day exposure, CW produced more fully metamorphosed individuals compared with CE and UM, but during the 100-day exposure AM produced more fully metamorphosed individuals compared with the CW. There was reduction in fully metamorphosed juveniles compared with partially metamorphosed for CE and UM during the 40-day exposure, as well as in the CW during the 100-day exposure. These results will be important for understanding how mussel populations are affected by CEC exposure. The experiments also yielded many insights for laboratory toxicology exposure studies. Environ Toxicol Chem 2024;43:1112-1125. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.