The effect of D.I.C. processing conditions on rheological and cooking properties of commercial fresh egg pasta was studied. The mechanical properties of pasta before and after cooking were evaluated by empirical test and characterised by maximal apparent force ( F max) and apparent relaxation coefficient (ARC). Structural (apparent density) and cooking quality were evaluated by determining mass ratio (W/Wo), optimal cooking time (OCT), swelling index (SI), solid, soluble and total cooking losses (TCL) and compared to untreated pasta. The hydrothermal treatment caused a reduction in firmness and relaxation capacity of treated pasta. The increase of processing conditions induced a decrease of F max and the processing time has an influence when it is associated to the low pressures. The values of ARC vary from 51% (untreated pasta) to 37% (D.I.C. treated pasta). The increase of processing time from 30 to 60 s does not seem to have a significant influence on ARC. The apparent density of treated pasta is a function of processing pressure and time but it is always lower than untreated pasta density. Treated pasta had a higher quality score based on water sorption and SI and matter losses (TCL values and solid and soluble losses) as compared to untreated pasta.