Siglecs are cell surface proteins that belong to the immunoglobulin superfamily and which bind sialic acids. They are composed of two groups, the conserved Siglecs and the CD33-related Siglecs. Previous studies have reported the occurrence of gene conversions between human CD33-related Siglecs and suggested that these conversions are adaptive because they increase the diversity of these immunoglobulin-related genes. Here, we analyze the Siglec genes of five primate species and show that gene conversions are not observed between conserved Siglec genes but that they are frequent between primate CD33-related Siglecs. The gene conversions between CD33-related Siglec genes only occur between similar genes and equally frequently in sialic acid binding and nonbinding domains. Furthermore, dN/dS ratio tests show that most of the Ig-like V-type 1 and the Ig-like C2-type 1 domains of Siglec genes evolve either neutrally or under purifying selection and that gene conversions were not responsible for the positively selected regions detected in the Ig-like V-type1 domain of the human SIGLEC7 and SIGLEC9 genes. Our results suggest that the frequent gene conversions between CD33-related Siglec genes are simply a consequence of the high degree of sequence similarity of these genes and that they are not adaptive.
Read full abstract