Achieving optimal immunogenicity and efficacy in vaccination presents significant challenges, including the need for multiple doses and the limited immunogenicity observed with certain vaccine formulations. To overcome these obstacles, researchers are exploring supplementary components and innovative delivery strategies. The development of an effective vaccine delivery technology is crucial for achieving sufficient protective immunity and disease prevention. This article focuses on the potential of erythrocytes as vaccine carriers to enhance vaccine effectiveness, particularly in the context of whole particle vaccines. The extended lifespan of erythrocytes enables sustained antigen exposure, resulting in continuous antigen presentation to immune cells. Moreover, erythrocytes exhibit biocompatibility, a well-established safety profile, and the capacity to modulate immune responses through interactions with complement receptors. These characteristics position erythrocytes as an appealing platform for targeted vaccine delivery. The hypothesis suggests utilizing bispecific monoclonal antibodies to complement receptor 1 and specific pathogen proteins to hitchhike inactivated pathogens onto erythrocytes. These modified erythrocytes can then serve as carriers to deliver the whole particle vaccine to antigen-presenting cells (APCs) or function as APCs themselves in the spleen. This article puts forward treatment protocols aimed at improving accessibility of vaccinations at the appropriate location, reducing the frequency of vaccine doses, and stimulating sufficient protective immunity.