AbstractThe non‐linearity and fear hypothesis predicts that certain non‐linear sounds are one way to evoke antipredator responses in both birds and mammals. This hypothesis, however, has not been studied in non‐vocal species or in reptiles. Such a study would be important because if non‐linear sounds are evocative even in a species that does not produce sounds, then there may be generally salient cues of risk in these sounds. We asked whether non‐vocal lizards, white‐bellied copper‐striped skinks (Emoia cyanura), respond to experimentally broadcast non‐linearities. This species is ideal to ask the question in because prior research has shown that they respond to predator sounds and alarm calls of other species even though they are not vocal. We conducted playback experiments with three computer‐generated simulated non‐linearities to assess whether or not skinks increased antipredator behavior after hearing them. We controlled for novelty by broadcasting a 3‐kHz, 500‐ms pure tone and tropical kingbird (Tyrannus melancholicus) song. Our treatments consisted of a 3‐kHz, 400‐ms pure tone followed by a frequency shift up to 5‐kHz for 100‐ms, a 3‐kHz, 400‐ms pure tone to frequency shift down to 1‐kHz for 100‐ms, and a pure tone followed by 100‐ms of white noise. Following a total of 222 playbacks, we categorized responses into looking, locomotion, and high locomotion, focusing on how skinks changed their rates of time allocation from baseline. We examined 95% confidence intervals to identify whether skinks responded to playbacks and fitted general linear models followed by pairwise comparisons to ask whether skinks discriminated between broadcast stimuli. We found that skinks were especially responsive to frequency downshifts: They significantly increased looking and locomotion, consistent with our predictions based on the non‐linearity and fear hypothesis. Surprisingly, they decreased rates of looking behavior after hearing frequency upshifts, possibly suggesting an increase in relaxed behavior. While skinks responded to noise by increasing their rate of locomotion, this response was not significantly different from controls. We conclude that skinks increase antipredator behavior after hearing downshifts more than any other type of non‐linearity. This provides some support for the non‐linearity and fear hypothesis; even non‐vocal species may respond fearfully to specific types of non‐linear sounds.
Read full abstract