In this research work, the rheological properties of Wood-Plastic Composites (WPC) with some selected compositions are investigated. WPC is being recognized as a green composite that, in the past 20 years, has emerged to a commercial product. A study on rheological properties of these materials can give insight into the proper selection of composition and processing condition. Two grades of polypropylene (PP) with two different melt flow indexes (MFI) were selected to prepare WPCs with three different wood contents (50, 60 and 70 % wt.). Four types of rheological experiments were performed utilizing a rotational plate rheometer: (1) strain sweep, (2) frequency sweep, (3) temperature sweep and (4) steady shear rate sweep. The independent variables were chosen as wood content, MFI of polymer (two types), melt temperature, frequency or shear rate, the gap between the plates, and strain percentage. The strain sweep tests specified the linear and non-linear viscoelastic zones of each experiment. The results of frequency sweep experiments indicated that increasing the wood content and frequency and also decreasing the strain percentage and the gap distance, lead to an increase in the storage modulus. Regarding the loss modulus, wood percentage and the gap distance presented positive effects and strain percentage showed a negative effect. The behavior of complex viscosity was almost similar to that of the storage modulus but increasing the frequency caused a decrease in the complex viscosity. In case of temperature sweep experiments, it was observed that the rheological properties exhibit a rapid change near to a temperature of 160 °C. The results also showed that beyond this point, increasing the wood content and also MFI of polypropylene caused an increase in the storage modulus. The results of steady shear rate sweep experiments specified that increasing wood content and also decreasing the MFI of PP, the gap distance and shear rate lead to an increase in both viscosity and shear stress.
Read full abstract